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After a rigorous introduction to hyperreal numbers, we give in terms of  non 
standard analysis, (1) a Lagrangian statement of classical physics, and (2) a 
statement of formal quantum scattering. 

1. INTRODUCTION 

In recent decades the notions of infinitesimal and infinite numbers 
have entered the dominion of pure mathematics, essentially due to the 
mathematician A. Robinson (see, for example, Robinson; 1974). This has 
given rise to a wide series of  studies meant to clarify the historical relations 
between traditional analysis (now called "standard")  and the approach now 
called "nonstandard analysis" (NSA). (See, e.g., the "Nonstandard 
Models" section of Mathematical Reviews.) 

Not so numerous, but certainly more interesting for the physicist, is 
the research showing the undeniable formal and sometimes substantial 
advantages that the adoption of NSA offers to theoretical physics (see, e.g., 
Keleman, 1974; Helms and Loeb, 1979; Francis, 1981). 

In the present paper we are interested primarily in the advantages of  
the nonstandard formulation rather than in its contents. We are persuaded 
in fact that the clearer synthesis that NSA permits provides many new 
starting points for theoretical physics. 

This work is intended as the first step of a wider investigation: while 
here we test the general advantages of NSA on both classical and quantum 
grounds, further work is in progress to study Dirac's &function, and a third 
stage is intended in which we want to examine the same foundations of 
quantum mechanics using our new point of view. 
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The paper, after a mathematical preface dealing with hyperreal num- 
bers, is divided into two applications of NSA to physics: the first is a 
synthetic but complete reformulation of classical physics from the 
Lagrangian point of view; the second glances at a well-known method of 
standard scattering theory. 

2. H Y P E R R E A L  N U M B E R S  

The aim of this section is to discuss a simple model of hyperreal 
numbers. We refer to Valenti (1982-1987) for further details. 

2.1. Let E be a nonempty set, P(E)  the family of the parts of E, and 
m" an external measure on P(E).  

With obvious and nonrestrictive assumptions on m", the family O(E)  
of the subsets with a zero measure has the following properties: 

(a) m"(0) = 0. 
(b) m"(E) ~ O. 
(c) V F ~  P(E)  and VG~ P(E) ,  if m"(F) = 0  and G c  F ~ m " ( G )  =0.  
(d) V F ~  P(E)  and V G ~  P(E) ,  if m"(F) = m"(G) = 0 0  m"(Fw G) = 

O. 

Generally, however, it is not true that 

(e) VF ~ P(E)  and VG~ P(E),  if m"(F c~ G ) = O ~  m"(F) �9 m"(G) = 
0. 

If family O(E) also has (e), it is called "a family of insignificant subsets." 

2.2. Reference to an external measure helps give an intuitive jus- 
tification for the introduced definition. It is clear, however, that we can 
consider propositions (a)-(e) in axiomatic form, postulating that some 
subset of E belongs to a generic family O(E). This leads to considering a 
family O(E) subject to the following requirements: 

(a') Q~60(E) .  
(b') E ~ O(E). 
(c') V F c  E, if F~ O(E) and G c  F ~ G ~  O(E). 
(d') V F c  E a n d V G c  E, i f F ~  O(E)and  G~ O(E) ~ F ~  G~ O(E). 

Analogously, property (e) will be stated as follows: 

(e') V F c  E a n d V G c E ,  i f F ~  O(E) and G~ O(E) ~ F ~ G~ O(E). 

This is equivalent to 

(e") V F c  E and V G ~  E, if Fc~G~ O ( E ) ~  F~ O(E) or G e  O(E). 
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Having disconnected our treatment from the concept of external measure, 
we consider the following: 

Definition. Given a nonempty set E and a family O(E) of  pa~s of  E, 
we will say that O(E) is "o f  insignificant subsets" if it satisfies the following 
requirements: 

(i) Q ~  O(E). 
(ii) E ~ O ( E ) .  

(iii) [ F ~ O ( E ) ^ G c F ] ~ G ~ O ( E ) .  
(iv) [ F ~ O ( E ) A G ~ O ( E ) ] ~ F u G ~ O ( E ) .  
(v) F n  G~ O ( E ) ~ [ F ~  O(E)v  G~ O(E)] .  

In line with this definition we will call "significant" all the subsets of E 
that do not belong to O( E ). 

Now, given a generic subset F of /~ and calling E - F its complement 
with respect to E, we have the following: 

Lernma. F belongs to O(E) if and only if E - F  does not belong to 
O(E), o r  

O(E) = { F ~  P(E) :  E -  F e P ( E ) -  O(E)} 

Proof. Let F ~ O ( E )  and, ab absurdo, E - F ~ O ( E ) ;  since E = F u  
(E - F ) ,  property (iv) should imply E ~ O(E), which is contrary to (ii). On 
the other hand, let E - F ~ P(E) - O(E) ;  since, because of (i), (E - F)  c~ F 
O(E), property (v) implies that at least one of E - F  and F belongs to 
O(E), and this one can only be F. 

This proves the lemma, which can now be expressed as follows: 
a subset of  E is insignificant if and only if its complement is signifi- 
cant. [ ]  

From the foregoing we have the following basic result: 

Theorem. The family S ( E ) = P ( E ) - O ( E )  of significant subsets 
satisfies the following properties: 

(i) Q ~ S ( E ) .  
(ii) E ~ S ( R ) .  

(iii) [ F ~ S ( E ) A F c G ] ~ G ~ S ( E ) .  
(iv) [ F c S ( E ) A G c S ( E ) ] ~ F c ~ G c S ( E ) .  
(v) F u  G~ S ( E ) ~ [ F c S ( E ) v  G~ S(E)] .  

We omit the proofs, based on the previous lemma. 
Properties (I)-(V) characterize a very import.ant mathematical struc- 

ture: the "Ultrafilter." 

2.3. To build our model, we now identify set E with the set N of 
natural numbers of which we consider first a generic finite subset G. The 
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complement N -  G of this set will be called "cofinite." We denote by F ( N )  
the family of  all the cofinite subsets of N. 

It is easily verified that F(N) satisfies requirements (I)-(IV), of previous 
paragraph, but not (V). 

Nevertheless, it is possible to merge family F(N) into another S(N) 
(also constituted of subsets of N)  that satisfies (I)-(V). 

This interesting result ensures the existence within set N of (at least) 
one Ultrafilter containing the cofinite parts. This result (which we will not 
prove here) provides the key for a clear model of hyperreal numbers, as 
we will show next. 

2.4. Let R be the real fileld, R(N) the class of all the sequences of 
real numbers, and S (N)  a family of significant subsets of N containing the 
cofinite subsets. We give also the following: 

Definition. Two sequences {an} and {bn} of  real numbers will be said 
to be "equivalent according to Robinson" (or "R-equivalent") if their 
elements coincide in correspondence with the naturals of a subset belonging 
to S(N) (that is, with theindexes  that constitute a significant set). It is easy 
to prove that this is an equivalence relation. 

If we consider the set R* of the classes in which R(N) (which is the 
set of sequences of real numbers) is divided using S(N), we can prove that: 
The set R* of these equivalence classes, endowed with the natural sum and 
product operations, is a field. 

Let us consider the following: 

Definition. Let _a be an element of R* and {an} a sequence representa- 
tive of a such that an > 0 for every n of a significant set of indexes. We will 
then say that the element _a of field R* is "positive" or "greater than 0_" 
(meaning by this the zero of R*). 

As this definition is independent of the choice of the representative 
{a,}, it follows that: Set R* can be endowed with a total order consistent 
with the field operations. 

The ordered field R* thus obtained is called the "field of hyperreal 
numbers." 

2.5. Obviously R* contains a subfield R[ ] isomorphic to the field R 
of real numbers. Its elements are called "real hyperreals" or, when there 
is no ambiguity, simply "reals." 

We can also prove that in R* there are: 

1. Positive numbers smaller than every positive real 
2. Negative numbers greater than every negative real 
3. Positive numbers greater than every positive real 
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4. Negative numbers smaller than every negative real 

Proof We will prove only the first statement, that is, the one t h a t  
ensures the existence of  R* of "infinitesimal positive numbers." Let _/ be 
the element of R* represented, for example, by the sequence {i,} = 1, 
1/2, 1 / 3 , . . . ,  1 / n , . . . ,  with n increasing in N -  {0}. The indexes set N - {0}, 
being cofinite, is significant and therefore i is a positive hyperreal. 

On the other hand, for any positive real x, we have 1/n < x  for any n 
greater than a fixed ~ depending on x and thus every term of the {x - 1/n} 
sequence is greater than 0 on a cofinite set of indexes, therefore significant. 

Thus, hyperreal x - j ,  of  which this sequence is representative, can only 
be positive. But x is arbitrary and therefore the statement is proved. �9 

2.6. This legitimates the notions of "infinitesimal number," "finite 
number," and "infinite number." Moreover, for any finite hyperreal _a', one 
and only one real hyperreal a infinitely close to it exists, such that difference 
g ' - a  is infinitesimal. On this is based the following: 

Definition. Let a'  be a finite hyperreal number. We call the "standard 
part" of a', indicated by st(a'), the real hyperreal g infinitely close to a'. 

The difference a'-rst(_a') is called the "infinitesimal part" of a'. 

3. CLASSICAL PHYSICS 

We will show how to get Lagrange equations using Hamilton's principle 
and the form that these equations taken in NSA. As is well known, the 
action of  a classical system can be expressed as 

J 
~ t 2 

I = L(q, (1, t) at (1) 
tl 

where q are generalized coordinates. The extremal value of I with respect 
to a, where 

Q(t, c~) = q(t)  + ax ( t  ) 

yields 

0_/ =0  
c ~ O  

The NS form of the derivative is 

,,  T,a 7, 

(2) 

(3) 

at (4) 
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where 

~o = L ( Q +  3',, O, t)-L(Q, Q, t) 

~o =/-,(Q, O+ n,, t)-/4Q, O, t) 
3" = Q(t, a + ~) - Q(t, a) (5) 

~7 = Q(t, a + ~) - Q(t, a) ,  and 3"~, Vl, 6 ~ R ~ 

(R ~ is the set of infinitesimal numbers). From this and (2) one obtains 

6 =X(t)  (6) 

and 

~ = s t [  o ( t ' a + ~ ) - o ( t ' 6  a ) ]  =)~(t) (7) 

Using (6) and (7) in integral (4)yields 

OI s'r  (<~ 
0 ~  q L3 ' ,  \~hlA Xdt 

Moreover, (3) gives 

which implies 

= 0  

Thus, explicitly for n independent coordinates, the Lagrange equations take 
the following NS form: 

-Y-~i - \~-~1 / =0, i = l , . . . , n  (10) 

where, for example, 

~__~=st[L(qi+yi,q:~, (1~, t ) -L (q i ,  (1~, t) 1 
3'1 3/1 

and where the differential nature of the equations has been traded for a 
new NS algebraic nature. 

In the same fashion, and using the Hamiltonian 

N 

H(q,p,  t) = 2 (1iP~-L(q, (t, t) (11) 
i= l  
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where Pi = ~:0,/~71, we obtain Hamilton equations in the form 

P, = - % , /  Yl , q, = %,l fl , ,  H '(')= L '(') 

where 

rlqj Tl = st [ H ( qi + T I , Pi, t ) - H ( qi, Pi, t).] 
I/1 

rlPi/l~l =st [ H(qi' fllt)- H( qi' Pi' t )]  

H'( ' )=s t [  H ( t + r ) - - H ( t )  ] r  ' !/1, fl , ,  r R ~ 
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(12) 

In NSA notation one immediately has 

~v s t  - -  = m v +  A 
r/1 rh 

~ -  q~r~(r) +q  [(v �9 V)A+v ^ (~r ^ A)] (15) 
3'1 c 

We remark that V and ~7 ̂  operators in (15) are the NS extensions of grad 
and curl, and, as such, algebraic operators defined as 

f T ~ ( r ) : s t [ i A ( ~ x ) + j A ( ~ y ) + k A ( ~  z) 

[^ (A((Az)y) 
~r ̂  A(r)= st i \  7 

\ 3' 

4- k (A((Ay)x) 

where, for example, 

A((Ay)z) I 

A((A~)~) / 

T , 

a((Ax)y)/l 

A(~x) = ~p(x + % y, z) -- ~(x, y, z) 

A( (Az)y) = Az(x, y + % z) - Az(x, y, z) 

(14) 

L = �89 2 -  q~(r) + q v .  A (13) 
c 

As an example, consider a charged particle in an electromagnetic field. With 
obvious notation its Lagrangian is 
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Finally, we get 

~i, = (v" V)A+A '(') 

Using this last equality, substituting equations (14) and (15) in (10), and 
considering the canonical extensions to R* of E and B as obtained from 
Maxwell equations yields the required Lorentz force: 

F=q(E+ l/c. vAB) 

We emphasize that we have never used, implicitly or explicitly, the notion 
of limit, which is absolutely not essential in NSA. 

4. QUANTUM PHYSICS 

Here we discuss briefly a possible application of NSA to operators that 
in the standard approach are singular. 

The resolvent operator 

G(E)=-(E-H)-' (16) 

where H is the hamiltonian of a physical system, is ubiquitous in quantum 
physics, and it plays an important role in such different contexts as relativistic 
quantum field theory, statistical physics, and the formal theory of scattering. 
Considered as a function of the c-number E, it displays singularities at the 
eigenvalues of H. This difficulty is normally circumvented by analytical 
continuation into the complex E-plane cut along the real axis. 

The advantage presented by NSA with respect to the possibility of 
handling infinities as well as infinitesimals on the same footing as finite 
quantities permits a very natural way of outflanking the above difficulties. 

Thus, assuming previous knowledge of the eigensolutions of 

Hol~ba) = E~~ (17) 

one is led to consider nonstandard, Hermitian operators H with NS 
hyperreal eigenvalues E. satisfying the Schrfdinger equation 

Hlq, a)=Ea[q,a), Ea=E(~ Va, with ~ R  ~ (18) 

Provided one can split the Hamiltonian as 

H=Ho+AV, AcR ~ XV=H1 (19) 

it is easy to obtain 

10.) -- 32 A ~ A"ln) = [ao(Ea)Hl]"14),~) (20) 
n 

where 

Go(Eo) = (Eo - Ho)- '  (21) 
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It is easy to show that by taking the standard part of  (20) one obtains the 
limit for I r a ( E ) ~ 0  of the solutions of  the normal Lippmann-Schwinger  
equations. 

It is interesting to remark that when the general procedure outlined 
above is specialized to the elementary case of  potential scattering with 

h 2 h2k 2 
Ho = ~2; H1 = V(r); E = +~;  ~:e R ~ (22) 

2m 2m 

where Ho is a defined NS operator, a NSA version of the Green's  function 
is obtained as 

G(r,  r ' ) -  1 l f + ~ k ' e x p ( i k ' l r - r ' l )  
4~2i lr -r ' !  - ~-5_-k,--~+ ~ dk' (23) 

where ~7 c R ~ which is formally very similar to the standard version, except 
for the fact that to all effects ~7 in (23) is a NS real infinitesimal, which 
does not require any further mathematical step such as a limiting procedure. 
The integral (23) is now perfectly defined, but it is difficult to compute,  so 
it is better to consider r/ as a complex infinitesimal. 

It might be worth speculating about the possibility of  developing an 
entirely algebraic NS integration procedure along appropriate paths in the 
R* space, in analogy with the normal complex integration. 

5. C O N C L U S I O N  

The above short mathematical  summary and physical applications of  
NSA support  the idea that the adoption of the latter is feasible in practice, 
and that it may in some cases lead to conceptual and formal, if not necessarily 
practical, simplifications. Further work along these lines is in progress. 
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